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A POWER-SERIES SOLUTION FOR A STRONGLY
NON-LINEAR TWO-DEGREE-OF-FREEDOM SYSTEM
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A power-series method is presented for the analysis of a conservative strongly non-linear
two-degree-of-freedom (d.o.f.) system with cubic non-linearity. The method is based on
transforming the time variable into an harmonically oscillating time whereby the governing
di!erential equations become well conditioned for power-series analysis. The oscillating
time frequency is obtained by enforcing Rayleigh's energy principle. The results show good
agreement with those obtained using the Lindstedt}PoincareH method.
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1. INTRODUCTION

In recent years, attempts have been made by researchers to extend the use of classical
perturbation techniques to strongly non-linear oscillators. Geer and Anderson [1] used
a hybrid perturbation-Galerkin technique which employs a perturbation expansion to give
an approximate solution which is then used for a subsequent Galerkin analysis. Burton
[2, 3] used the classical Lindstedt}PoincareH (LP) method and de"ned an expansion
parameter to enable accurate low order solutions to be obtained for oscillators with odd
non-linearity. More recently, Cheung et al. [4] proposed a modi"ed LP method (MLP) by
de"ning a new expansion parameter which remains small even if the original parameter
grows without bound. The MLP method is suitable for a system with even or odd
non-linearity and has been used to analyse a strongly non-linear single-d.o.f. system [4] and
later generalized to multiple-d.o.f. systems [5].

A major drawback of the perturbation methods is the excessive labour needed for
algebraic manipulations of successive perturbation steps. This promoted the use of recently
developed symbolic softwares to reduce the e!ort involved in such perturbation problems.
In this paper, a power-series method [6] is presented for an undamped strongly non-linear
two-d.o.f. system previously analyzed by Cheung et al. [5]. The power-series analysis of the
undamped oscillators is facilitated by transforming the time variable into an harmonically
oscillating time. The method yields results that compare well with those of existing
techniques and has the advantage of requiring minimum computational e!ort and simple
computer code.

2. FORMULATION

Consider the free vibrations of a two-d.o.f. system governed by the equations.

xK#x#Ax3#Bx2y#Cxy2#Dy3"0, (1)

yK#9y#Ex3#Fx2y#Gxy2#Hy3"0 (2)
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subject to the initial conditions x (0)"x
0
, xR (0)"0, y(0)"y

0
, yR (0)"0. The overdot

denotes di!erentiation with respect to time t. This system has been analyzed by Cheung
et al. [5] and describes the transverse free vibration of an undamped clamped}hinged beam
using a two-mode approximation. The constants in equations (1) and (2) have the following
values; A"0)2788, B"!0)3111, C"1)116, D"!0)3864, E"B/3, F"C, G"3D,
H"3)8703. A direct power-series expansion for the displacements x, y in terms of t, results
in a convergent solution over a small time interval only in the neighbourhood of t"0.
However, power-series expansions for conservative systems that are convergent for all times
are facilitated upon transforming the time variable t into an harmonically oscillating time
q as follows:

q"sinut, (3)

whereby the in"nite extent of time t (0)t(R) is reduced to a "nite time scale
(!1)q)1), and the new time q oscillates at a frequency u to be determined. Upon
introducing equation (3) into equations (1) and (2), the transformed equations of motion
become

u2(1!q2)xA!u2qx@#x#Ax3#Bx2y#Cxy2#Dy3"0, (4)

u2(1!q2 )yA!u2qy@#9y#Ex3#Fx2y#Gxy2#Hy3"0 (5)

subject to the initial conditions x (0)"x
0
, x@ (0)"0, y(0)"y

0
, y@(0)"0. The prime denotes

di!erentiation with respect to time q. This transformation permits power-series
representation of x and y in terms of q. According to the theory of ordinary di!erential
equations [7], equations (4) and (5) have one ordinary point at q"0 and two regular
singular points at q"$1. It is convenient to write power-series expansion for x and
y about the ordinary point as

x(q)"a
1
#a

2
q#a

3
q2#2"

=
+
k/1

a
k
qk~1, (6)

y(q)"b
1
#b

2
q#b

3
q2#2"

=
+
k/1

b
k
qk~1, (7)

where a
i
, b

i
are constant coe$cients to be determined. Since q is periodic, equations (6) and

(7) are capable of capturing periodic motion which is appropriately assumed to start from
the maximum displacement position. Under this condition, all the terms having odd powers
of q in equations (6) and (7) vanish and the same motion is repeated every half-cycle (positive
or negative) of the oscillating time. This requires the oscillating time frequency to be equal
to one-half the vibration frequency.

u"

X
2

. (8)

Introducing equations (6) and (7) into equation (4), one obtains

u2(1!q2 )
=
+
k/1

a
k
(k!1) (k!2)qk~3!u2q

=
+
k/1

a
k
(k!1)qk~2

#

=
+
k/1

(a
k
#Ac

k
#Bd

k
#Ce

k
#Df

k
) qk~1"02 , (9)
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in which the non-linear terms are expanded as

x3"
=
+
k/1

c
k
qk~1, x2y"

=
+
k/1

d
k
qk~1, xy2"

=
+
k/1

e
k
qk~1, y3"

=
+
k/1

f
k
qk~1, (10)

which result from di!erent multiplications of equations (6) and (7). It follows that the
constant coe$cients c

k
, d

k
, e

k
and f

k
can be computed once the constants a

1
, a

2
,2 , a

k
and

b
1
, b

2
,2 , b

k
are known. An appropriate shifting of indices in the "rst two terms in

equation (9) is now introduced so that all terms have the same power, thus

=
+
k/1

Mu2[k (k#1)a
k`2

!(k!1)2a
k
]#a

k
#Ac

k
#Bd

k
#Ce

k
#Df

k
Nqk~1"0. (11)

Equation (11), representing the "rst equation of motion, is satis"ed exactly by making the
coe$cient of each power vanish identically. This condition introduces the recurrence
relation

a
k`2

"

[(k!1)2u2!1]a
k
!Ac

k
!Bd

k
!Ce

k
!Df

k
k(k#1)u2

, k"1, 2, 32 (12)

between the series coe$cients. Similarly, introducing equations (6) and (7) into equation (5)
and following the same steps described above, the following recurrence relation is
established:

b
k`2

"

[(k!1)2u2!1]b
k
!Ec

k
!Fd

k
!Ge

k
!Hf

k
k (k#1)u2

, k"1, 2,2 . (13)

By introducing the initial conditions associated with equations (4) and (5) into equations (6)
and (7), one obtains the following coe$cients:

a
1
"x

0
, a

2
"0, b

1
"y

0
, b

2
"0. (14)

The remaining coe$cients depend recursively on these four fundamental coe$cients and on
the oscillating time frequency in accordance with equations (12) and (13). It follows that
a solution, as expressed in equations (5) and (6), is obtained once the oscillating time
frequency is determined. For that purpose, Rayleigh's energy principle is invoked. This
principle states that, for a conservative system, the maximum potential and kinetic energies
are equal. For the system under consideration, the potential energy < is obtained from its
relation with the non-linear elastic forces

F
x
"

L<
Lx

and F
y
"

L<
Ly

in equations (1) and (2), respectively, as

<"
1

2
(x2#9y2)#

1

4
(Ax4#Hy4 )#

B

3
x3y#

C

2
x2y2#Dxy3. (15)

The maximum potential energy<
max

is associated with the maximum displacement position
assumed to occur at the start of the motion t"q"0, and is determined
by setting x"x

0
, y"y

0
in equation (15). The kinetic energy of the system is given by

¹"1
2
xR 2#1

2
yR 2"1

2
u2(1!q2 ) (x@2#y@2). (16)
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The maximum kinetic energy ¹
max

occurs at the equilibrium position for which

ut"n/4, 3n/4, 5n/4,2, etc. From equation (3), this position is reached at q"$1/J2.
By using this result in equation (16), one obtains

¹
max

"1
4

u2 (x@2#y@2) D
q/1@ J2

. (17)

3. RESULTS AND DISCUSSION

The free vibration solution to equations (1) and (2) begins by assuming a set of initial
conditions for the displacements x and y. For the "rst non-linear frequency of vibration, it is
assumed that x (0)"x

0
, xR (0)"0, y (0)"0, yR (0)"0. This determines the "rst two

fundamental constants in equations (6) and (7) from equation (14). The remaining
coe$cients are determined recursively from equations (12) and (13) for an assumed value of
the oscillating time frequency. A search for the correct oscillating time frequency is made by
computing the error function e"<

max
!¹

max
for each u and the actual frequency is

obtained when e"0 which ensures that Rayleigh's energy principle is satis"ed. It was
observed that for small amplitude oscillations, the error function e had a stationary
minimum value at the correct solution whereas it changed sign for large amplitudes. In
Figure 1, the "rst non-linear vibration frequency X

1
obtained by the LP and MLP method

[5] is compared with the present method. Good agreement is seen between the power-series
solution and the MLP method. The error in the classical LP method is signi"cant at large
amplitudes.

A convergence test was made for the power-series solution. Figure 2 shows the
convergence of the "rst frequency for amplitude x

0
"3 as the number of terms are

increased. For smaller amplitudes, fewer terms are required to obtain accurate solutions.



Figure 2. Convergence of the "rst vibration frequency for amplitude x
0
"3.

TABLE 1

Odd power-series coe.cients for amplitude x
0
"3, number of terms"25

a i"1 i"3 i"5 i"7 i"9

a
i

0)3000E1 !0)7117E1 0)5063E1 !0)7364E1 0)9661E1
a
i`10

!0)1477E2 0)2241E2 !0)3496E2 0)5489E2 !0)8713E2
a
i`20

0)1392E3 !0)2236E3 0)3608E3

b
i

0)0000Eo 0)1893E1 !0)5676E1 0)9241E1 !0)1515E2
b
i`10

0)2505E2 !0)4196E2 0)7041E2 !0)1181E3 0)1980E3
b
i`20

!0)3718E3 0)5660E3 !0)9317E3
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The solution generated had zero even power-series coe$cients because of the vanishing of
initial velocities. Table 1 shows the odd coe$cients for amplitude x

0
"3 with 25 terms.

A progressive increase in the absolute value of the coe$cients is evident. This characterizes
the solution coe$cients at large amplitudes and may be explained by a ratio test. By noting
that only even powers of q exist in equations (6) and (7), the convergence of the solution for
x is assured providing the ratio between two consecutive terms Da

n`2
q2/a

n
D(1, so that

Da
n`2

/a
n
D(q, where q"D1/q2 D. For small amplitude vibrations, convergent power-series

solutions are obtained over the entire time domain corresponding to DqD"1 for which q"1
and the series coe$cients therefore decrease in absolute value with an increase of the index.
For large amplitude vibrations, convergent solutions are obtained [8] over one-quarter

cycle corresponding to DqD"1/J2 for which q"2 and the series coe$cients may therefore
increase such that Da

n`2
/a

n
D(2 as can be veri"ed from Table 1. The same argument is

extended to the coe$cients of y.
Figure 3 shows the results for the amplitude}frequency relation of the second frequency

(y
0
!X

2
).

4. CONCLUSION

A power-series solution has been presented for a strongly non-linear two-d.o.f. system
with cubic non-linearity. The results show good agreement with the modi"ed



Figure 3. Amplitude}frequency relation (y
0
!X

2
).

494 M. I. QAISI AND A. W. KILANI
Lindstedt}Poincare'method for the "rst vibration frequency. The method can be applied to
strongly non-linear conservative oscillators and avoids tedious algebraic manipulations
inherent in perturbation techniques.
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